Circuits in Emerging Nanotechnologies

Rinaldo Castello Thomas Ernst Seok-Hee Lee Subhasish Mitra Ion O'Connor University of Pavia CEA-LETI SK-Hynix Stanford University Ecole Centrale de Lyon

Chair: Adrian Ionescu, EPFL

Rinaldo Castello

University of Pavia

Symposium on Emerging Trends in Electronics

MONTREUX 2014 NONTREAT 2014

Panel on Circuits in Emerging Nanotechnologies

> Rinaldo Castello University of Pavia Italy

EVOLUTION OF IC TECHNOLOGIES Technology Aspects

Huge cost increase of advanced IC technologies.

Limited access to deeply scaled technologies for Research/Education

Competing technologies FDSOI cheaper but can it scale? FinFET can scale better

Result is slowing down of Moor's Law

Sweet spot technology Today 28nm LP Tomorrow 14 nm FDSOI?

OPPORTUNITIES OF TECHNOLOGY EVOLUTION FOR ANALOG / RF DESIGN

Critical road blocks for Analog Design Automation

- Digital libraries too complicate to become stable between technology steps
- Huge investment in analog libraries not justified by limited use
- Insufficient time to document accurately each analog IP
- "Cultural" difficulty for analog designer to document his work/use poorly documented cells

With slowing down of Moor's Law (Sweet Spot Technology) Analog Design Automation may become real

New bread of SOFTER analog designer may appear

RISKS OF TECHNOLOGY EVOLUTION ESPECIALLY FOR ANALOG / RF DESIGN

Huge costs (especially mask cost) reduces R&D and possibly stops access to Universities

- Slowing down Innovation
- Reduced number of well trained designer for Industry
- Slowing down of technology migration and integration (SOC)
- Slowing down introduction of new systems on the market

More General Risk

Slowing down progresses in Information society

EVOLUTION OF IC TECHNOLOGIES FOR ANALOG / RF CIRCUIT DESIGN

Limitations for Analog/RF

- Increased Variability
- Worse Transistor Matching
- Larger 1/f Noise
- Smaller Gain per stage
- Fewer topology at low supply

Advantages for Analog/RF

- Faster Trans (Ft/Max THz)
- Smaller switching delay delays
- Larger 1/f Noise
- Super matched passives
- Very high Trans Q

New approach required

- Digitally intensive
- Digitally assisted
- Adaptively calibrated/corrected
- Closed loop operation beyond GHz

Still "Analog Thinking" is Mandatory for Success

Thomas Ernst

CEA-LETI

Ceatech

FROM INTEGRATED CIRCUITS TO INTEGRATED SYSTEMS

THOMAS ERNST

Montreux Symposium on emerging trends in electronics 1/12/2014

IC technology research – is this the end ? No : several new market drivers

 Autonomous or ultra low power SoC-SiP (IoT, ...) and related servers

LETI, 2014 IEEE WF on IoT

• Automotive

Google

• Health & Biochips

EPFL / LETI collab. 2014 IEEE Nano

leti

Major semiconductor suppliers' **advanced CMOS logic manufacturing** technology capability in 2011. (*Source: IHS iSuppli*)

IC research technology drivers

leti

3DIC evolution, for low consumption, high performances

leti

	5- 15 years Advanced concepts	 Novel computing paradigms Beyond CMOS hybridization Bio-inspired 3D process
	0 -10 years The alternative to "More Moore" scaling	 Logic-on-Logic : (Monolithic and 3D-Stacked) Monolithic 3D memories PHOTONICS RF/MEMS – ANALOG Biochips Novel substrates
	Today The packaging evolution Heterogeneous Era	 Si/Smart Interposers Memory on Logic Logic on analog MEMS on logic RF/ANALOG 3D imagers Biochips

Some breakthroughs:toward integrated systems

 How to connect /pattern heterogeneous devices at low cost with several types of interconnections

• FUSION : Embed Logic + memory + nano-systems

Ultra-dense 3D

Sensors in CMOS

Source: LETI

E-Health

Collaborations: Philips, Infineon, Siemens, Sorin, STMicroelectronics, Ipdia, Biomerieux ...

- Flexible substrate integration
 - Interco & RDL flexibles
 - Integrated antenna on foil
- U Low power:
 - 65nm → 28nm FDSOI
 - RFID, RF supply
- Biocompatibility & hermetic packaging Intégration & passivation wafer level
- Ultra-small high performance passive
 - capa3D: 1µF/mm2

leti

| 17

Seok-Hee Lee

SK-Hynix

Symposium on Emerging Trends in Electronics

Session 1 : Emerging Technologies - Circuits and Devices in the Nano Era Panel : Circuits in Emerging Nanotechnologies

Design for Low power & High performance DRAM

2014. 12. 1 Seok-Hee Lee R&D Division, SK hynix

Memory demand split across multiple sub-segments

A variety of device will appear and high performance & low power DRAM will be needed as one of the most important roles in the system

Transistor for Higher performance & Lower Power

Needs higher performance peripheral transistor for DRAM and it is affected by the slow scaledown trend of Tox

Low Power DRAM design Technique example

Various circuit technique is being studied for low power DRAM

[Source : Low Power Design Methodology and Design Flow- JAN M. RABAEY & M. Miyazaki e al, A 1.2GIPS/W uProc using speed-adaptive Vt CMOS]

Solutions for Higher Performance & Higher Density

Require higher speed, less I/Os scheme due to process difficulty and high cost of TSV

High Reliability & Low Cost DRAM

Require cost reduction through decreasing defect rate by On-Chip ECC, PPR, etc.

	ltem	Objective	Effect, Status	Issues
	Advanced Refresh	Refresh	Compensate Retention Time Degr adation	Increase IDD
	Smart Refresh	Refresh	Improve LtRAS	
DFR (Design For	VBB Temp Modulation	Write	Write Recovery Time	
cell Reliabilit y)	POD (Post Over Drive)	Refresh	Compensate Sensing Margin	Increase IDD
	On chip ECC	Error	Correction	Area Overhead
	PPR (using ARE)	Error	Aging Fail	

Subhasish Mitra

Stanford University

The Next 1,000X

Subhasish Mitra

Collaborator: H.-S. Philip Wong

Department of EE & Department of CS Stanford University

Abundant-Data Applications

N3XT 1,000X Energy Efficiency

3D Resistive RAM
Massive storage

Carbon nanotube FET compute elements

STTRAM

L2, L3, ...

Carbon nanotube FET (or even silicon) compute elements

1. All data active on-chip

Monolithic 3D

Inter-layer vias:

1,000X TSV density

2. Computation immersed in memory

3. Variability, yield, reliability

Carbon Nanotube FET (CNFET)

1. First CNFET computer

2. High-performance CNFETs

First CNT Monolithic 3D IC

Ian O'Connor

Ecole Centrale de Lyon

Five Grand Challenges for Circuits in Emerging Nanotechnologies

Prof. Ian O'Connor <u>ian.oconnor@ec-lyon.fr</u> Institut des Nanotechnologies de Lyon Université de Lyon – Ecole Centrale de Lyon

http://inl.cnrs.fr

Five grand challenges

- 1. Reduce energy consumption and increase energy efficiency of data processing
- 2. Use technology to its limit throughout its life cycle, and ensure reliable system operation in the presence of both unreliable devices and increasing complexity
- 3. Develop hardware solutions for ZB data storage suited to the big data era
- 4. Develop systems adapted to new services (M2M, IoT, cloud computing ...)
- 5. Promote and exploit the potential of 3D heterogeneous integration

Energy

- @22nm
 - switching 1 bit in a transistor costs:

~1-10 aJ

Moving a 1-bit data on silicon costs:

~1 pJ/mm

- >GHz switching
- >G transistors/cm²
- 10³ above theoretical limit (Von Neumann-Landauer bound)

Source : R. Drechsler, U. Bremen

k.T.In(2) ≈**3 zJ (3x10⁻²¹J)** @300K

Reliability

- Systematic variability (e.g. proximity effects) can be compensated physically
- Random variability cannot be compensated physically
 - Worsens with scaling
 - Compensation must be built into design
- Huge challenge
 - 3σ/μ values for threshold voltage up to 80%@22nm!

Ex : lithography, mask correction

Ex : dopant concentration

Memory

- Cache hierarchies overcome distant data access issues, but at the cost of high real estate and complex management
- 3D integration of dense, fast, low-cost, non-volatile memory tiers (RRAM, MRAM ...) could make them irrelevant

distributed memory tiers above cores RRAM / MRAM / SEM ...

processing tier: manycore or reconfigurable matrix

 Configuration memory also benefits

Distributed data processing (M2M, IoT ...)

- Ultra-low energy
 embedded systems
 - Energy-constrained
 - Sense and interact with the physical environment
 - Real-time constraints
 - No intervention (intelligent, adaptive)
 - Hundreds of Mbps per mobile terminal

- High-performance datacenters
 - Power-constrained
 - Handling and storage of resulting exabytes of data
 - Security and reliability constraints
 - Hundreds of Gbps per node

3DICs = heterogeneity + complexity

- Virtually infinite design space
 - Billions of increasingly diverse and complex elementary devices
 - Nonlinear behavior of transistors, technological options
 - Multi-physics sensors/ actuators for miniaturization
 - Nanoscale devices for equivalent scaling

 Design approaches still in the Age of Great Explorers

 Design space models bring GPS to design!

Circuits in Emerging Nanotechnologies

Rinaldo Castello Thomas Ernst Seok-Hee Lee Subhasish Mitra Ion O'Connor University of Pavia CEA-LETI SK-Hynix Stanford University Ecole Centrale de Lyon

Chair: Adrian Ionescu, EPFL

Question 1

- In which type of circuit applications (logic, memory, analog, RF, sensors with readout ICs) do you foresee an imminent role of emerging nanotechnologies as alternative and/or complement to CMOS?
- At which time horizon?

Please argue your answer.

Question 2

Today, one new technology driver, on top of the traditional scaling, is the so called **energy efficiency**.

- The question is how much (better) energy efficiency one can achieve by emerging nanotechnologies (for instance, using technologies allowing scaling down the voltage supply below 0.5V in logic circuits) and how much by novel optimized design from circuit to system level?
- How important is this topic for the future, in your opinion and how should be addressed?

Circuits in Emerging Nanotechnologies

Rinaldo Castello Thomas Ernst Seok-Hee Lee Subhasish Mitra Ion O'Connor University of Pavia CEA-LETI SK-Hynix Stanford University Ecole Centrale de Lyon

Chair: Adrian Ionescu, EPFL

